L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg
For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of ~450 m. The pulsed signals at 1572 nm are upconverted to 635 nm, and detected by a photomultiplier tube, to test how the upconversion technology performs in a long range detection system. The upconversion approach is compared to an existing direct detection scheme using a near-IR detector with respect to signal-to-noise ratio and quantum efficiency. It is for the first time analyzed how the field-of-view of a receiver system, for long range detection, depends critically on the parameters for the nonlinear up-conversion process, and how to optimize these parameters in future systems.
Read paper in full