Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the acf domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/covesion/public_html/wp-includes/functions.php on line 6121

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the check-email domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/covesion/public_html/wp-includes/functions.php on line 6121

Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the rank-math domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/covesion/public_html/wp-includes/functions.php on line 6121
High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser - Covesion

Follow us

G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, and A. Foltynowicz

Abstract

We demonstrate a broadband mid-infrared (MIR) frequency comb source based on difference frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystal. Mid-infrared radiation is obtained via mixing of the output of a 125 MHz repetition rate Yb-doped fiber laser with Raman-shifted solitons generated from the same source in a highly nonlinear fiber. The resulting idler is tunable in the range of 2.7 – 4.2 μm with average output power reaching 237 mW, and pulses as short as 115 fs. The coherence of the MIR comb is confirmed by spectral interferometry and heterodyne beat measurements. Applicability of the developed DFG source for laser spectroscopy is demonstrated by measuring absorption spectrum of acetylene at 3.0 – 3.1 μm.

Read paper in full

Share article

  • Twitter
  • LinkedIn