• Website search
  • Distributor login
  • Quote
  • Solution finder
Covesion Logo
    • EN
  • Home
  • Products
  • Applications
  • Resources
    • Case Studies
    • Publications
    • Technical Guides
    • Whitepapers
    • FAQs
  • News & Insights
    • Company News
    • Events
  • About Us
    • Why Choose Covesion
    • Careers
    • Customers & Partners
    • Research Projects
  • Contact Us
    • International Distributors
  • Home
  • Products
    • Components and Modules
    • Custom PPLN
    • MgO:PPLN Crystals and Chips
    • PPLN Accessories
  • Applications
    • Space & Defence
    • Spectroscopy & Environmental Science
    • Scientific Instrumentation
    • Research
    • Quantum Science
  • News & Insights
    • Company News
  • About Us
    • Why Choose Covesion
    • Customers & Partners
    • Research Projects
  • Resources
    • Publications
    • Technical Guides
    • FAQs
  • Contact Us

Components and Modules

Custom PPLN

MgO:PPLN Crystals and Chips

PPLN Accessories

Electronic Control Products

  • Fiber Coupled Bulk Crystal Module
  • Ruggedised Waveguide Package
  • Component Waveguide: Fiber
  • Component Waveguide: Free-space

We offer a range of custom design packages including; one-off crystals, OEM prototyping and large-volume manufacture.

Custom PPLN
  • SHG Crystals
  • OPO Crystals
  • DFG Crystals
  • SFG Crystals
  • Waveguide Chip
  • PPLN Ovens
  • Temperature Controllers
  • PPLN Crystal Clip Kits
  • PPLN Oven Mount Adapters
  • Waveguide Accessory Pack
  • Standard Electronic Control Products
  • Electronic Product OEM Manufacture
  • Electronic Design Services
Space & Defence
Scientific Instrumentation
Spectroscopy & Environmental Science
Research
Quantum Science
View All Applications

Suggested Searches

MgO:PPLN Crystals Custom PPLN Crystals PPLN Accessories PPLN Waveguides

Can’t find what you’re looking for?

Contact Us
Resources10W, high repetition rate, 775 nm fiber laser with high resolution pulse shaping, and on-demand pulse to pulse switching capability, for bioinstrumentation

10W, high repetition rate, 775 nm fiber laser with high resolution pulse shaping, and on-demand pulse to pulse switching capability, for bioinstrumentation

Louis Desbiens, Vincent Roy, Michel Jacob, Yves Taillon

Summary form only given. Advances in the research fields of biological, biophysical and biochemistry rely on the development of novel, flexible, powerful and reliable laser sources in the visible – NIR part of the spectrum [1, 2]. Optical excitation in the 750-800 nm region, with flexible pulsed formats, can be advantageous in applications such as confocal fluorescence microscopy, STED, FLIM microscopy, photoluminescence spectroscopy, laser photocoagulation and time-resolved spectroscopy. Finely tailored pulse formatting can indeed provide significant enhancement in many of those techniques [3] by optimizing the temporal distribution of the optical excitation with respect to the specific characteristics of the fluorophore of interest such as its excited-state lifetime for example. With those considerations we have developed a fiber laser source that combines a 1550 nm pulse-shaped MOPA system [4], offering coarse temporal control resolution (1 ns), with a high frequency AWG module operating at close to 8 GHz, that drives an intensity modulator downstream of the directly modulated semiconductor seed diode of the MOPA system. The result is both an improvement of the temporal control resolution (130 ps) and an increase of the possible dynamic range by combining the pulse shaping capability of the two sub-systems. The polarization-maintaining, LMA fiber-based, 20W IR laser source is frequency converted to 775 nm in a MgO:PPLN crystal which exhibits a conversion efficiency as high as 65% (see inset of Fig. 1(a)). More importantly, it can sustain a conversion efficiency of greater than 35% over most of the temporal range of operation (70 ps – 6 ns), while preserving an excellent M2 of better than 1.1 (see inset of Fig. 1(b) and (c)). The repetition rate of the source is nominally set at 10 MHz but can be adjusted as the AWG module and the pulsedshaped MOPA system share a common clock and are arranged in a master/slave configuration. Finally the design of the system allows for rapid switching of the active pulse shape without any interruption of the pulse train which could prove to be very useful for, on the fly, optimization of the pulse shape during a continuous scan. Fig. 1(d) illustrates such rapid change of the active pulse shape at up to 10 MHz. Any of the 255 different pulse shapes held in memory can be called at any given time, the switch occurs after completion of the active pattern generation.

View full paper
  • Share
  • Share
13th Aug 2021
  • OPO/OPA

Get Updates

Sign up to our newsletter to stay updated

  • By completing this form you are agreeing to our Privacy Policy and Terms & Conditions. We will never pass your information onto any 3rd parties. Learn more about our privacy and data policy.

Subscribe to our e-newsletter for the latest information

By completing this form you agree to our Privacy Policy and Terms and Conditions. We will never pass your information to any third party. Learn more about our Privacy and Data Policy.

BACK TO THE TOP
  • Careers
  • Products
  • Applications
  • Resources
  • Publications
  • Technical Guides
  • FAQs
  • News & Insights
  • About Us
  • Customers & Partners
  • International Distributors
Address
Unit F3, Adanac North, Adanac Drive, Nursling, Southampton, SO16 0BT, United Kingdom
  • Email
    sales@covesion.com
  • Telephone
    +44 (0)1794 521638
Find us
UK Quantum Badge
  • Privacy & Cookies
  • Website Terms of Use
  • Accessibility
  • Contact Us
  • Sitemap
© 2023 © 2021 Covesion Ltd. All Rights Reserved | Covesion UK Registration Number 06338847, VAT Number 943 1896 00 Website by ExtraMile Communications

Subscribe to our e-newsletter for the latest information

By completing this form you agree to our Privacy Policy and Terms and Conditions. We will never pass your information to any third party. Learn more about our Privacy and Data Policy.

  • By completing this form you are agreeing to our Privacy Policy and Terms & Conditions. We will never pass your information onto any 3rd parties. Learn more about our privacy and data policy.
Close